Measurement of Poisson’s ratio with contact- resonance atomic force microscopy
نویسندگان
چکیده
We describe contact-resonance atomic force microscopy ͑AFM͒ methods to quantitatively measure Poisson's ratio or shear modulus G at the same time as Young's modulus E. In contact-resonance AFM, the frequencies of the cantilever's resonant vibrations are measured while the tip is in contact with the sample. Simultaneous measurement of flexural and torsional vibrational modes enables E and to be determined separately. Analysis methods are presented to relate the contact-resonance frequencies to the tip-sample contact stiffness, which in turn determines the sample's nanoscale elastic properties. Experimental results are presented for a glass specimen with fused silica used as a reference material. The agreement between our contact-resonance AFM measurements and values obtained from other means demonstrates the validity of the basic method.
منابع مشابه
Effects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers
Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...
متن کاملSimultaneous measurement of Young’s modulus and Poisson’s ratio at microscale with two-modes scanning microdeformation microscopy
متن کامل
A simplified but intuitive analytical model for intermittent- contact-mode force microscopy based on Hertzian mechanics
The forces acting on the substrate in intermittent-contact-mode (IC mode, tapping mode) atomic force microscopy are not accessible to a direct measurement. For an estimation of these forces, a simple analytical model is developed by considering only the shift of the cantilever resonance frequency caused by Hertzian (contact) forces. Based on the relationship between frequency shift and tip–samp...
متن کاملTowards a better understanding of wood cell wall characterisation with contact resonance atomic force microscopy
Nowadays, the multi-scale modelling of wood has a great need for measurements of structural, chemical and mechanical properties at the lowest level. In this paper, the viscoelastic properties in the layers of a wood cell wall are investigated using the contact resonance mode of an atomic force microscope (CR-AFM). A detailed experimental protocol suitable for obtaining reproducible and quantifi...
متن کاملEffective Parameters in Contact Mechanic for Micro/nano Particle Manipulation Based on Atomic Force Microscopy
The effect of geometry and material of the Micro/Nano particle on contact mechanic for manipulation was studied in this work based on atomic force microscopy. Hertz contact model simulation for EpH biological micro particle with spherical, cylindrical, and circular crowned roller shape was used to investigate the effect of geometry on contact simulation process in manipulation. Then, to val...
متن کامل